
J .  Fluid itfech. (1982), vol. 123, p p .  43-57 

Printed in Great Britain 

43 

Stability of circular Couette flow with variable inner 
cylinder speed 

By G. P. NEITZEL 
Department of Mechanical and Energy Systems Engineering, Arizona State University, 

Tempe, AZ 85287 

(Received 22 December 1981 and in revised form 26 March 1982) 

Energy-&ability theory is employed to study the finite-amplitude stability of a 
viscous incompressible fluid occupying the space between a pair of concentric 
cylinders when the inner-cylinder angular velocity varies linearly with time. For the 
case with a fixed outer cylinder and increasing inner-cylinder speed, we find an 
enhancement of stability, consistent with a linear-theory result due to  Eagles. When 
the inner-cylinder speed decreases, we find an initially decreased stability bound, 
indicating the possibility of hysteresis, while, if the inner cylinder is allowed to reverse 
direction and linearly increase in speed, we find significant stability enhancement. 

1. Introductiofi 
The stability of flows between concentric rotating cylinders has been an area of 

vigorous study since the original work of Taylor (1923). The great bulk of the work 
done to date has been concerned with the instability of steady Couette flow. The recent 
review article by Di Prima & Swinney (1981) gives an excellent account of the 
theoretical and experimental research on this problem. 

Recent interest) in t>he &ability of unsteady flows in general has drawn a significant 
amount of attention to various types of unsteady Couette flow. Chen & Kirchner 
(1971) and Liu & Chen (1973) examine Couette flow with an impulsively started inner 
cylinder, while Hall (1975), Riley & Laurence (1976) and Tustaniwskyj & Carmi 
(1980) treat t,he case with a modulated inner-cylinder speed. Chen, Liu & Skok (1973) 
assume the inner cylinder is taken from a state of rest to its final angular velocity 
a t  a constant acceleration. Seminara & Hall (1975) and Eagles (1977) analyse cases 
whose basic states are assumed to be slowly varying, so that the WKBJ method could 
be applied ; the former assume a slowly varying azimuthal pressure gradient, while 
the 1at)t'er assumes that the inner-cylinder angular velocity is a slowly varying 
quantity. Neitzel(1982) considers Couett'e flow initiated by impulsively stopping the 
outer cylinder, the entire system having been in an initial state of rigid-body rotation, 
and Xeitzcl& Davis (1980) examine the related problem of spin decay within a single 
cylinder. 

With the exception of the work of Tustaniwskyj & Carmi (1980), Neitzel & Davis 
(1980) and Neitzel (1982), all of the aforementioned research has relied on linear 
stability theory to obtain results. For cases with time-periodic basic states, linear 
theory may be applied in a relatively straightforward fashion since Floquet, theory 
guarantees the existence of an exponential time factor and hence a well-defined 
growth rate. For time-aperiodic basic states, however, Floquet theory no longer 
applies. I n  these cases, one must &her restrict one's at'tention to slowly varying flows 
to allow use of t>he WHBJ approximation, making furt'her assumptions regarding a 
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st.ability criterion, or base a stability decision upon some arbitrary quantity such as 
a disturbance amplification factor. The three investigations noted above employ 
energy-stability theory under various stability criteria to treat their respective 
problcms. A strong-stability criterion requires that disturbances to the basic state 
decay to guarantee stability while a marginal-stability criterion only requires that 
disturbances be smaller in magnitude than their initial values. The energy-theory 
formulation yields a set of linear governing equations that are only parametrically 
dcpendent. on time while restricting neither disturbance amplitude nor rate of change 
of the basic state. 

The problem of interest here is related to  that of Eagles (1977). Consider a pair 
of infinitely long concentric circular cylinders of radii a, and b > a whose gap is filled 
with a viscous, incompressible fluid. We assume that the initial state of the system 
is steady Couet'te flow characterized by a Reynolds number R, = Q ( b - a ) 2 / v ,  where 
R is the angular ~eloci t~y of the inner cylinder (the outer cylinder is assumed fixed) 
and 11 is the kinematic viscosity of the fluid. At time t = 0, the inner-cylinder angular 
velocity w ( t )  begins to increase or decrease linearly with time. The problem of Eagles 
(1977) varies slightly in that his initial condition is somewhat different' (he assumes 
a flow starting from rest a t  t = - co) and he also treat's cylinder speeds varying 
quadratically in time. Eagles assumes that the inner-cylinder angular velocity is 
sloiidy varying in time so that he can use linear stability theory coupled wit>h the 
WKBJ approximation. The present analysis employs energy-stability theory under 
a strong-st'abilit'y assumption so that neither the rate of change of t'he cylinder speed 
nor the disturbance amplitude is limited. Strong stability guarantees exponential 
decay of disturbances as long as points on an experimental trajectory are below the 
critical curve in the Reynolds-number-time plane. 

We examine the stability of this flow for two different values of cylinder radius 
ratio q = a /b  equal to 0.5 and 0-95, and several accelerations, both small and large. 
For 71 = 0.5, the results of energy theory and linear-theory calculations for steady 
Couette flow are quite close (see Di Prima & Swinney 1981). We find, for the unsteady 
problem with 9 = 0.5 and o increasing, that  the flow is stable at instantaneous 
Reynolds numbers significantly above the linear-theory critical value for steady 
Couettc flow. We also find that' there exists a starting condition that maximizes this 
enhancement of stability. Cases for which the inner-cylinder speed decreases, changes 
direction and then increases in the opposite direction show an initial reduction in 
critical Reynolds number over the steady-state value (indicating a possible hysteresis) 
followed by an enhancement after the direction change. 

2. Basic state 
We assume a viscous, incompressible fluid occupies the gap between a pair of 

infinitely long, concentric circular cylinders of radii a and b. The flow is assumed to 
be in an initial state of steady Couette flow with the outer cylinder fixed and the inner 
cylinder rotating a t  constant angular velocity Q. The Reynolds number characterizing 
this flow is R, = R(b - a ) 2 / v .  At time t = 0, the inner-cylinder angular velocity begins 
to vary according to the relation w ( t )  = Q(1 +At), where d is a positive or negative 
constant of unrestricted magnitude. 

Let ( r ,  8, z )  be the usual cylindrical co-ordinates with corresponding velocity 
components (Cr, V ,  W ) .  We seek a pure-swirl basic state of the form 

u = (0, V(r , t ) ,O)  
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r 

FIGURE 1. Velocity profiles for 7 = 0.95 and A = 1.6 for various times. 

Under the above assumptions, the init>ial-boundary-value problem governing 
V ( r ,  t )  is given by 

V, = v(JLT+r-*t$-r-zV 1 9  (2.1) 

J’(a, t )  = aSZ( 1 +At), (2 .2 )  

I ’ (b , t )  = 0, ( 2 . 3 )  

(2.4) 

An analytical solution to (2.1)-(2.4) may be obtained in a straightforward fashion 
by using Laplace transforms and Duhammel’s Principle. This solution may be found 
in the appendix and was used to compute basic-state values required by the 
computations which follow. Values a t  various radii for selected times and radius ratios 
were computed using an implicit finitedifference technique to check these results. 
Figures 1 and 2 show velocity profiles at various times for cases of positive and 
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FIGURE 

r 

FIGURE 2. Velocity profiles for T = 0 6  and A = - 5 0  for var ious  

r 

times. 
-0.6 
2. Velocity profiles for T = 0 6  and A = - 5 0  for va ,rious 

negative acceleration constant. The results were non-dimensionalized using the 
following scales : length + b - a ,  

time -+ (b -a )2 /v ,  

velocity -+ ( b  - a)SZ. 

These profiles might lead one to conclude for cases with A > 0 (figure 1, A is the 
non-dimensionalized A )  that  one will eventually reach a time beyond which the flow 
will never again be stable, while for cases with A < 0 (figure 2) that  there are 
perhaps intermediate times for which disturbances to the basic state must decay. This 
conclusion is borne out by the results of the stability computations. 

3. Stability analysis 
As mentioned in 5 1 ,  Eagles allows inner-cylinder speed variations that are functions 

of a ‘slow’ time 7 = at, where e < 1 .  I n  this case, the basic state varies on a timescale 
much longer than the diffusive timescale on which disturbances develop. For basic 
states whose time dependence arises from an impulsive change in boundary conditions, 
this approach fails since both the basic state and the disturbances to it evolve on the 
same diffusive timescale. Neitzel & Davis (1980) and Neitzel (1982) have employed 
energy-stability theory to treat such flows within rotating cylinders. I n  applying 
energy theory to the present problem, one can treat not only the slowly varying cases 
of Eagles, but also cases of rapidly changing cylinder speed. which are out of the range 
of applicability of linear stability theory. 
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The energy identit>y is derived in the usual fashion (Serrin 1959) by taking the inner 
product of the disturbance velocity vector u = ( ZL,  21, so) with the nonlinear disturbance 
equations and integsating over a volume Y of a cell defined by 

where we have assumed axial periodicity with period Z in anticipation of Taylor- 
vortex-type disturbances. The result is 

_ -  - R I - D ,  dE 
d t  

where 
E E & ( u . u ) ,  I =  ( w ( V / r - - F ) ,  Dr (Vu:Vu). 

R is the Reynolds number defined by 

SZ(6 - R E  
V 

and ( ) denotes integration over 9'. The flow is said to be strongly stable if R < RE, 
where 4 7 

(3.2) 
1 1 

RE S D' 
- = max- 

7 1 
1-7' 1-y' 

S =  uJuEC~, u=O for r =- - 

1 V -  u = 0, u periodic in z with period Z 

and i 
is the usual set of kinematically admissible functions. Serrin (1959) has shown that, 
for R < RE, the integrated disturbance kinetic energy E obeys the inequality 
E-'(dE/&t) < 0, implying energy decay. Hence, R < RE is a sufficient condition for 
stability to disturbances of arbitrary amplitude. 

The Euler-Lagrange equations corresponding to the variational problem (3.2) are 

- 1 1 1 2  
r r2 r2 

iRV1tr + - (ru,),+ use -k u,, - - u----v - n, = 0, (3.3a) 

(3 .3b )  
I 1 1 1 2 1  

&RYu +- (?-tir), + rz vtlH + v,, -- ti +- u-- no = 0, 
r r2 r2 r 

1 1 
- (rw,), +-woo + w,, - n, = 0, 
r r2 ( 3 . 3 r )  

( 3 . 3 4  
1 1 
r r 
- ( r u ) , + - U o + U ' t  = 0, 

where 
Y ( r , t )  = r-lV(r,t)-  V,(r,t) 

represents the contribution of the basic state. R" and TI are Lagrange multipliers, with 
a having the significancc that 

K, = minii, 
T 
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where T is identical with S except for t'he fact that  the solenoidal condition on u has 
been relaxed. The appropriate boundary conditions are 

7 1 
1-q '  l-?] 

u = O  a t  r = -  -. (3.4) 

Equations ( 3 . 3 ~ 4 )  are linear, although no assumptions restricting disturbance 
amplitude have been made, and the dependence on time is now parametric through 
the quantity Y( r ,  t). This latter fact eliminates the necessity of making an arbitrary 
decision regarding the onset of instability based on disturbance amplification as has 
been done in some linear-theory work on related problems (see e.g. Chen et al.  1973). 

An interpretation of the results of this type of analysis is given in Homsy (1973) 
and in Neitzel & Davis (1980) and is omitted here. The theory is capable of providing 
a lower bound on the onset time of an instability by guaranteeing that before such 
a time all disturbances must decbay. Likewise, in certain circumstances, one may 
obtain an upper bound on a decay time, i.e. a time after which all disturbances to 
the basic state must decay. A discussion related directly to the results obtained for 
thc present flow will follow shortly. 

4. Solution procedure 
We begin our determination of RE by making the usual assumption that the 

disturbances are axisymmetric. Strong-stability calculations by Chen & Neitzel 
(1983) for impulsively initiated Couette flow show that such disturbances have both 
the earliest bounds on onset times and the latest bounds on decay times, so that even 
though the present flow is somewhat different, we have some confidence that our 
assumption is proper. We then assume the disturbances can be decomposed into 
normal modes as 

(u. 1 1 ,  n) = (u", C,@) cos k z ,  uj = zF sin ka, 

where it = 2n/Z is the axial wavenumber. Under these assumptions (3.3a-d) reduce 
to (dropping tildes) 

r (4.1CL) 

(4.1 b )  

(4.1 c )  

( 4 . l d )  

1 
r 

W" + - 111' - k 2 t ~ ~  + kp = 0. 

u'+-+kw = 0, 
U 

r 

where a prime denotes differentiation with respect to r .  (The boundary conditions 
(3.4) remain the same.) The determination of RE at a fixed time is now accomplished 
by minimizing the eigenvalues R of the system (4.1) with boundary conditions (3.4) 
over the spacc of axial wavenumbcrs k, i.e. 

RE = minIRI. (4.2) 
k 

The calculation procedure is to fix t and compute the smallest positive eigenvalue 
X of the system (4.1) subject to the boundary conditions (3.4) for various axial 
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wavenumbers k in order to determine RE using (4.2). Eigenvalues were computed 
using a standard shooting technique with fourth-order Runge-Kutta integration and 
200 integration steps. A fixed-step-size integration routine was used so that, for given 
t ,  Y ( r ,  t )  could be evaluated at predetermined values of r and stored. Therefore, each 
iteration required by the shooting method can use these same values, eliminating the 
time-consuming evaluation of Bessel functions, which would be necessary for each 
iteration if a variable-step-size integrator were used. The above procedure produces 
one point in the (RE, t)-plane. Time was then varied to  produce a curve of RE versus 
time for each radius ratio 7 and acceleration A considered. Points below such curves 
correspond to strong stability of the unsteady Couette flow under consideration. 

5. Results and discussion 
Stability results have been obtained for radius ratios 7 = 0.5 and 7 = 0.95 for 

various values of A,  both positive and negative. Most of the results are for the case 
7 = 0.5, since i t  is here that energy and linear limits most nearly coincide for steady 
Couette flow. Results are presented in terms of R, = Q ( b - a ) 2 / v ,  the initial Reynolds 
number R, = w ( t )  ( b  - a)2 /v ,  the instantaneous Reynolds number based on w ( t ) ,  and 
R,, the energy-theory value for steady Couette flow. Results for the narrow-gap case 
of 7 = 0-95 are presented in figures 3-6, while those for the wide-gap case of 7 = 0.5 
are given in figures 7 and 8. 

Figure 3 shows the results obtained for 7 = 0.95, A = 1.6 (this value of A 
corresponds to  Eagles’ E = 04 ,  a choice that is quite large in the sense of E < 1). RE 
has been scaled by R, for ease of interpretation. An experimental trajectory would 
be represented on this plot by a horizontal line at  a starting condition defined by 
R,/Rs. The flow is strongly stable as long as a point on this experimental trajectory 
lies below the curve. Therefore, associated with each starting condition in the range 
0 < R,/Rs < 1 is a lower bound on onset time defined by the time at which the 
experimental trajectory intersects the curve of RE/Rs. As expected, RE/Rs intersects 
the ordinate a t  the value RE/Rs = I, implying that if one starts above the steady-state 
value and increases w ,  stability can never be guaranteed. For smaller starting values, 
stability is guaranteed for increasingly longer periods of time with the curve 
asymptotically approaching zero. This is the anticipated behaviour in light of the 
assumed form for w(t). Since w ( t )  = Q(l +At), if R, = 0 (implying Q = 0 ) ,  then w ( t )  
will be zero for all time. 

An alternate method of representing these results is to  use the time t corresponding 
to a particular value of R,/Rs to compute o(t) and hence R1JRS. Figure 4 shows 
the results of figure 3 presented in this way. As before, stability is guaranteed for 
values falling below the curve. Immediately apparent from this figure is the fact that  
the instantaneous Reynolds number R1,c below which stability is guaranteed, is above 
the steady-state value R,. This enhancement of stability is in accord with that shown 
by the linear-theory, slowly varying approach of Eagles (1977). Perhaps just as 
interesting is the fact that  there exists an optimum starting value R, for which the 
enhancement is maximized. In  this case, this occurs for R, of about 90% of the 
steady-state critical value (R, = 424 for 7 = 0.95). Starting at this value will result 
in stability being guaranteed against disturbances of arbitrary amplitude until R, is 
roughly 4 yo above R,. Eagles’ 20 Ol0 shift in critical Taylor number for linear theory 
translates to a 10% shift in Reynolds number for his analysis of infinitesimal 
disturbances. 

Results for the case of 7 = 0.95, A = - 1-6 (w decreasing) are given in figures 5 and 6. 
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FTGTTRE 3. R J R ,  versus time for r/ = 0.95, A = 1.6. An experimental trajectory is represented 
by a horizontal line at a starting condition defined by H,/Rs. 

In  figure 5, R,/Rs is plotted against time. For this choice of the constant A ,  Iw(t)l 
decreases linearly until t = 0-625 and then begins to increase owing to the fact that 
o changes sign a t  that  time. For starting values R, less than the steady critical value, 
stability is guaranteed until some point far beyond the point where the cylinder has 
reversed direction. Eagles' results for the decreasing case imply that if one starts below 
thc steady, linear-theory critical Taylor number and decreases w linearly, the 
instantaneous critical Taylor number will be somewhat lower. If one begins with 
steady Couette flow as assumed here and does this, then this result seems physically 
unrealistic and the present results show this to be impossible. If one assumes that 
this starting value was reached by decreasing w from a state that  was unstable, then 
a linear-theory analysis based on a pure-Couette-flow basic state does not apply, since 
a Taylor vortex constitutes a disturbance of finite amplitude. Our energy-theory 
approach does not suffer from this defect, since disturbance size is unrestricted. 
Therefore, when starting at Reynolds numbers that correspond to unstable steady 
C'ouctte flow, everything other than our prescribed basic state must be considered 
a disturbance. When the experimental trajectory corresponding to this starting 
condition enters the region of guaranteed strong stability, all disturbances to our basic 
state (including any remnants of a Taylor vortex) must begin to decay. 

Figure 5 shows that if one starts at R,/& > 12 then the flow is never guaranteed 
to be stable. On the other hand, if one begins in the range 1 < R,/R, < 12, then each 
experimental trajectory will pass through a region of strong stability in which 
disturbances to the basic state must experience exponential decay. Admittedly, the 
amount of time spent in this region may not be long enough for the disturbance to 
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FIQURE 4. R,,,/R, versus R,/Rs for 7 = 095,  A = 1.6. 
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FIGURE 5 .  R , / R ,  versus time for 11 = 095, A = - 1.6. An experimental trajectory is represented 
by a horizontal line at  a starting condition defined by R,/Rs. 
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-1.2L 

FIGURE 6 .  R, , , /R ,  versus R,IR, for = 095, d = - 1.6. 

decay appreciably, since the spike in the curve becomes quite narrow, especially for 
higher starting values. However, if one starts a t  a low-enough supercritical R,, the 
disturbance may not only decay appreciably, but the flow will remain stable for quite 
somc time following the reversal of cylinder direction. This can be seen in figure 6, 
which shows R,,,/Rs versus R,/Rs for the same parameters as figure 5 On this figure 
and the ones like i t ,  an experimental trajectory is represented by a vertical line that 
originates from a point on a straight line of slope one emanating from the origin. 
For this case of 7 = 0.95, A = - 1-6 we can see that initially stability will not be 
guaranteed (for R,/Rs > 1) until R, is well below Rs, e.g. 48 "lo below Rs for R,/R, = 6. 
This reduced region of guaranteed stability indicates that  hysteresis may indeed be 
possible. On the other hand, once we enter the region of strong stability for this R,, 
disturbances continue to experience exponential decay until the cylinder reverses 
direction and lRIl is 6O& ahoue R,. This enhancement in the opposite direction is 
maximized for this case a t  about 10% above Rs for R, 4Rs. This compares with 
a maximum enhancement of 4 yo obtained for the corresponding positive value of A .  

('aleulations for the wide-gap problem (7 = 0.5) were performed for six different 
values ofthe deceleration constant A ( kO.4, 1.6, f 50), and are presented in terms 
of instantancons and initial Reynolds numbers in figures 7 and 8. Figure 7 shows 
results for A > 0. The amount of enhancement increases with A and amounts to over 
12 " lo for the case A = 5.0. This value of A is well out of the range of applicability 
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FIGURE 7 .  R,,,/R, versus R,/Rs for 7 = 0 5  and A > 0:  ---, steady-state linear limit; 
- -. . . - - - - , Eagles' enhanced limit for A = 1.6. 

of Eagles' analysis. This relationship between RI,c and A can be anticipated by 
imagining large values of A for which the change in w becomes nearly impulsive. In  
this limit, a thin layer forms initially near the inner cylinder. I n  this thin shear layer, 
the stabilizing viscous forces are very high. This layer must thicken via diffusion 
before the destabilizing centrifugal forces can dominate, leading to instability. During 
this period, however, the inner-cylinder angular velocity can reach very high 
instantaneous values, resulting in stability being guaranteed for high values of R,. 

Also shown on figure 7 is the steady-state linear-theory limit for 7 = 0.5. Notice 
that the value of RI,c  a t  the point of maximum enhancement lies above this linear 
limit for all three values of A considered. Notice also that the point of maximum 
enhancement shifts to  lower values of R, for higher values of A .  For A = 1.6, the 
enhancement is about 5 O b ,  compared with 4 % obtained for 7 = 0.95 with the same 
value of A .  Eagles, on the other hand, predicts roughly 6 % enhancement of the linear 
limit for q = 0.5 compared with 10 yo for 7 = 0.95. Eagles' enhanced value for A = 1.6 
is also plotted on figure 7 as a horizontal line. The present results are consistent with 
that of Eagles in that they lie below the linear-theory result as they must. 

Results for 7 = 0 5  and A < 0 are shown on figure 8. Semilogarithmic co-ordinates 
have been used to display all the results on one graph. For all three cases considered, 
the amount ofenhancement ( - 40 o/o)following direction reversal is roughly the same. 
However, the starting values R, beyond which stability is never guaranteed (the 
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rightmost point of each curve) decrease sharply with decreasing A .  Also shown is the 
fact that  larger negative values of A contribute to a reduced region of stability for 
early times. Hysteresis, therefore, appears more likely for more negative A .  A 
comparison of the A = - 1.6 case with the corresponding case for 7 = 0.95 (figure 6) 
shows a larger region of stability (in terms of both the maximum R, and maximum 
lRI,cl) for the wide-gap case. 

The behaviour of the critical wavenumber k,, as a function of the acceleration A 
is of some interest, although i t  may not correspond to a dynamically admissible 
disturbance since ours is an energy-theory analysis. Chen et al. (1973) have determined 
critical wavelengths, both experimentally and numerically, for a similar problem in 
which the final inner-cylinder angular velocity was attained via constant acceleration 
from rest. I n  some of their cases, onset was noted after the final angular velocity had 
been reached. They observed a decrease in vortex wavelength with an increase in 
inner-cylinder acceleration. Figure 9 is a plot of k, versus RJRs for the three different 
values of A considered for 9 = 0.5. These are plotted for selected points and were 
determined to three significant figures, which explains the choppy nature of the data. 
The trend, however, is clear: for a fixed starting condition R,IRs, the critical 
wavenumber increases slightly with increasing A ,  in qualitative agreement with the 
results of Chen et al. 

These results clearly demonstrate the utility of energy-stability theory as applied 
to flows whose basic states vary with time. Unlike linear theory, energy theory is 
applicable to  flows that are not necessarily slowly varying (or time-periodic). I n  fact, 
as mentioned in $ 1 ,  for some of these flows energy theory is the only approach 
presently available, aside from direct numerical simulation. Energy theory provides 
a guarantee of stability against disturbances of arbitrary amplitude, which, in 
addition to being rigorously correct, is physically interesting. The present results 
indicate the possibility of hysteresis, especially for large values of inner cylinder 
acceleration/deceleration. Recent experiments by Park, Crawford & Donnelly (198 1) 
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FIGURE 9. Variation of critical wavenumber with R,/R, and A :  0, A = 04; 0 ,  1.6; 0, 5.0. 

have examined the effects of both cylinder acceleration and apparatus aspect ratio 
on the transition to Taylor-vortex flow. While a direct comparison with these results 
is impossible because of differing radius ratios and the fact that their initial conditions 
are not stated explicitly (i.e. whether each experiment was begun from a state of 
steady Couette flow and, if so, the corresponding value of Ro), the results of these 
experiments are in qualitative agreement with the present results; there is a definite 
hysteresis effect whose magnitude increases with increasing cylinder acceleration/ 
deceleration. Finally, the results of the energy-theory calculations are not necessarily 
conservative. I n  particular, for the problem treated here with 7 = 0 5  and A > 0, the 
results of energy and linear theories are sufficiently close that they can be used in 
the design of experiments. 
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€or many helpful discussions. Both he and Prof. S. H. Davis are thanked for their 
comments on an earlier version of the manuscript. Mr D. M. Mathis assisted with the 
computer programming and performed some of the calculations while participating 
in a National Science Foundation Undergraduate Research Participation Program. 
This work was sponsored by the National Science Foundation under Grant CME 
8006696. 
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Appendix 
The basic-state azimuthal velocity V(Y, t )  is given in dimensionless form by 

7 F’(r,t) = $(r)-(l+AL) 
1-7 

where 

A(b-a)2 
A =  

1’ 

In  the preceding, Jk  and Yk are the usual Bessel functions of the first and second 
kind respectively, and ai are the roots of the equation 

For any given 7, the roots at and quantities Ci and At are constants and need only 
be computed once. 
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